[문제요약] 입력으로 주어진 수 N 이 3 자리수 abc 이면
2^e = abc.....최소 e 을 찾는 것이문제이다. 단 주어진 입력의 자리수 보다 찾고자 하는 수는 2 배 보다 크다. 세자리 수 abc 이면 찾고자 하는 수는 7 자리 이상이다.
찾고자 하는 수가 없다면 "no power of 2"를 출력한다.
The left-hand part of these lines of digits is always intact, but unfortunately the right-hand one is often lost by erosion of the stone. However, she notices that all the numbers with all its digits intact are powers of 2, so that the hypothesis that all of them are powers of 2 is obvious. To reinforce her belief, she selects a list of numbers on which it is apparent that the number of legible digits is strictly smaller than the number of lost ones, and asks you to find the smallest power of 2 (if any) whose first digits coincide with those of the list.
Thus you must write a program such that given an integer, it determines (if it exists) the smallest exponent E such that the first digits of 2E coincide with the integer (remember that more than half of the digits are missing).
입력 1 2 10 출력 7 8 20
출처: Miguel A. Revilla 2000-02-09